Search results for " MODEL AVERAGING"
showing 9 items of 9 documents
Increasing Neural Stem Cell Division Asymmetry and Quiescence Are Predicted to Contribute to the Age-Related Decline in Neurogenesis.
2018
Summary: Adult murine neural stem cells (NSCs) generate neurons in drastically declining numbers with age. How cellular dynamics sustain neurogenesis and how alterations with age may result in this decline are unresolved issues. We therefore clonally traced NSC lineages using confetti reporters in young and middle-aged adult mice. To understand the underlying mechanisms, we derived mathematical models that explain observed clonal cell type abundances. The best models consistently show self-renewal of transit-amplifying progenitors and rapid neuroblast cell cycle exit. In middle-aged mice, we identified an increased probability of asymmetric stem cell divisions at the expense of symmetric di…
Regression with imputed covariates: A generalized missing-indicator approach
2011
A common problem in applied regression analysis is that covariate values may be missing for some observations but imputed values may be available. This situation generates a trade-off between bias and precision: the complete cases are often disarmingly few, but replacing the missing observations with the imputed values to gain precision may lead to bias. In this paper, we formalize this trade-off by showing that one can augment the regression model with a set of auxiliary variables so as to obtain, under weak assumptions about the imputations, the same unbiased estimator of the parameters of interest as complete-case analysis. Given this augmented model, the bias-precision trade-off may the…
Japan's FDI drivers in a time of financial uncertainty. New evidence based on Bayesian Model Averaging
2021
En este artículo analizamos los determinantes del stock de FDI saliente de Japón para el período 1996–2017. Este período es especialmente relevante ya que abarca un proceso de creciente globalización económica y dos crisis financieras. Para ello, consideramos un amplio conjunto de variables candidatas basadas en la teoría, así como en análisis empíricos previos. Nuestra muestra incluye un total de 27 países anfitriones. Seleccionamos las covariables utilizando una metodología basada en datos, el análisis Bayesian Model Averaging (BMA). Además, también analizamos si estos determinantes cambian según el grado de desarrollo (emergentes vs desarrollados) o las áreas geográficas (UE vs Asia Orie…
Real-time parameter estimation of Zika outbreaks using model averaging
2017
SUMMARYEarly prediction of the final size of any epidemic and in particular for Zika disease outbreaks can be useful for health authorities in order to plan the response to the outbreak. The Richards model is often been used to estimate epidemiological parameters for arboviral diseases based on the reported cumulative cases in single- and multi-wave outbreaks. However, other non-linear models can also fit the data as well. Typically, one follows the so called post selection estimation procedure, i.e., selects the best fitting model out of the set of candidate models and ignores the model uncertainty in both estimation and inference since these procedures are based on a single model. In this…
Weighted-average least squares estimation of generalized linear models
2018
The weighted-average least squares (WALS) approach, introduced by Magnus et al. (2010) in the context of Gaussian linear models, has been shown to enjoy important advantages over other strictly Bayesian and strictly frequentist model averaging estimators when accounting for problems of uncertainty in the choice of the regressors. In this paper we extend the WALS approach to deal with uncertainty about the specification of the linear predictor in the wider class of generalized linear models (GLMs). We study the large-sample properties of the WALS estimator for GLMs under a local misspecification framework that allows the development of asymptotic model averaging theory. We also investigate t…
Bayesian model averaging and weighted-average least squares: Equivariance, stability, and numerical issues
2011
In this article, we describe the estimation of linear regression models with uncertainty about the choice of the explanatory variables. We introduce the Stata commands bma and wals, which implement, respectively, the exact Bayesian model-averaging estimator and the weighted-average least-squares estimator developed by Magnus, Powell, and Prüfer (2010, Journal of Econometrics 154: 139–153). Unlike standard pretest estimators that are based on some preliminary diagnostic test, these model-averaging estimators provide a coherent way of making inference on the regression parameters of interest by taking into account the uncertainty due to both the estimation and the model selection steps. Spec…
A Generalized Missing-Indicator Approach to Regression with Imputed Covariates
2011
We consider estimation of a linear regression model using data where some covariate values are missing but imputations are available to fill in the missing values. This situation generates a tradeoff between bias and precision when estimating the regression parameters of interest. Using only the subsample of complete observations does not cause bias but may imply a substantial loss of precision because the complete cases may be too few. On the other hand, filling in the missing values with imputations may cause bias. We provide the new Stata command gmi, which handles such tradeoff by using either model reduction or Bayesian model averaging techniques in the context of the generalized miss…
Model uncertainty and variable selection: an application to the modelization of FDI determinants in Europe
2019
Las últimas décadas han visto un interés cada vez mayor en la IED, y un debate creciente sobre su modelización en términos de las variables consideradas como sus determinantes, la especificación del modelo y los métodos de estimación del modelo de gravedad de la IED. Esto se debe a la incertidumbre que rodea tanto las teorías como los enfoques empíricos de la IED. Esta Tesis doctoral tiene como objetivo contribuir a la literatura mediante la investigación de las fuerzas impulsoras de las actividades de las EMNs hacia y desde los países europeos, tanto a nivel regional como nacional, abordando los problemas de selección de variables e incertidumbre del modelo que se enfrentan al modelizar la…
Vai strukturālās reformas spēs veicināt Latvijas ekonomisko izaugsmi: BMA un GMM novērtējumu liecības
2017
Pētījuma ietvaros tiek pielietota Beijesa modeļu svēršana (BMA) un vispārīgā momentu metode (GMM) Globālās Konkurētspējas apakšindeksu (GCI) datiem, lai identificētu strukturālo reformu jomas, kas var nozīmīgi paātrināt Latvijas ekonomisko izaugsmi. Novērtējumu rezultāti, kuros ņemta vērā gan modeļu nenoteiktība, gan endogenitāte liecina, ka ekonomisko izaugsmi var veicināt ar augstākām investīcijām, zemāku administratīvo slogu, stabilāku makroekonomisko vidi, paaugstinātu ārvalsts tiešo investīciju kvalitāti, kā arī ar attīstītākiem uzņēmējdarbības klasteriem. Ja šajās jomās Latvijas sniegums pēdējo 10 gadu laikā būtu trīs labāko Eiropas Savienības dalībvalstu līmenī, tad ienākumu līmenis …